Çemberin Analitik İncelenmesi Konu Anlatımı

Konusu 'Geometri' forumundadır ve RüzGaR tarafından 16 Şubat 2011 başlatılmıştır.

  1. RüzGaR

    RüzGaR Super Moderator



    Çemberin Analitik İncelenmesi Konu Anlatımı
    Analitik düzlemde aynı özellikteki noktalar birleştirilirse; bazen bir doğru bazen de bir eğri oluşur. Her doğrunun bir denklemi olduğu gibi eğrilerin de denklemi vardır. Verilen bir eğrinin üzerindeki her noktayı sağlayan bağlantıya, o eğrinin denklemi denir. Eğrilerin denklemleri ikinci ya da daha çok dereceden olabilir. Çember denklemi de x ve y’ ye göre ikinci dereceden bir denklemdir. ​

    Çemberin Denklemi
    Düzlemde sabit bir noktadan eşit uzaklıkta bulunan noktaların kümesine, çember denir. Çember üzerindeki tüm noktaların koordinatları arasındaki bağıntıya da çemberin denklemi diyoruz. Bir çember, merkezi ve yarıçapı ile belli olduğundan, analitik düzlemde merkezi m(a,b), yarıçap uzunluğu r olan bir çemberin denklemini bulalım:

    Çember üzerinde bir nokta P(x,y) ise,
    |MP|=r dir. İki nokta arasındaki uzaklık formülünden;
    |MP|=(x-a)2+(y-b)2=r
    (x-a)2+(y-b)2=r2
    Bu bağıntıya, merkezinin koordinatları M(a,b), yarı çapı r olan çemberin denklemi denir.​

    Örnek: Merkezinin koordinatları; M(-2,3) ve yarıçap uzunluğu, r=5 birim olan çemberin denklemini yazınız.

    Çözüm: ​
    M(-2,3) = a=-2, b=3 ve r=5 brim ise,

    (x-y)2+(y-b)2 =r2 = (x+2)2(8y-3)2=25 bulunur.​

    Merkezli Çemberin Denklemi
    Bir çemberin merkezi orijinde ise, merkezin koordinatları M(0,0) dır. Yarıçap uzunluğu r, merkezi M(0,0) olan çemberin bu eğerleri, (x-a)2+(y-b)2=r2 denkleminde yerlerine yazılırsa, x2+y2=r2 denklemi elde edilir. Bu denkleme, yarıçap uzunluğu r olan merkezil çemberin denklemi denir.

    Örnek: Bir merkezil çember üzerinde, herhangi bir nokta A(-3,4) ise, bu çemberin denklemini bulunuz.

    Çözüm:
    Merkezil çemberin denklemi, x2+y2=r2 olduğundan, a(-3,4) noktası bu denklemi sağlar. Buna göre,
    x=-3 ve y=4 = (-3)2+42=r2
    9+16 = r2 = r=5 bulunur. Öyleyse, aradığımız denklem x2+y2 = 25 bulunur.​

    Merkezleri Eksenler Üzerinde veya Eksenlere Teğet Çemberlerin Denklemleri
    1- Merkezi x ekseni üzerinde olan çemberin denklemi:
    a = 0 ve b = 0 dır.

    M(0,b) = (x-a)2 + y2 = r2 olur.​


    2- Merkezi y ekseni üzerinde olan çemberin denklemi:​
    a = 0 ve b = 0 dır.

    M(0,b) = x2 + (y-b)2 = r2 olur.​


    3- x eksenine teğet olan çemberin denklemi:​
    |b| = r ise M(a,r)

    (x-a) 2+ (y-r)2 = r2 olur.
    y ​

    M(a,r)

    O a x

    4- y eksenine teğet olan çemberin denklemi;
    |a| = r ise, M(r,b)

    (x-r)2 + (y-b)2 = r2 olur.​

    y ​

    b ----------
    M(r,b) ​
    x

    5- Her iki eksene teğet çemberin denklemi:
    Eksenlere I. ve III. bölgede teğet çemberlerin merkezleri, y=x denklemi ile verilen doğru (I. Açıortay) üzerinde;turkeyarena.net eksenlere II. ve IV. bölgede teğet çemberlerin merkezleri de denklemi y=-x olan doğru (II. açıortay ) üzerinde bulunur.
    y y
    y=x​

    M1 M2​

    O x O x
    M3 M4 ​

    y=-x ​

    M1 (r,r) = (x-r)2 + (y-r)2 = r2 M2 (-r,r) = (x+r)2 + (y-r)2 = r2​

    M3 (-r,-r) = (x+r)2 + (y+r)2 = r2 M4 (r,-r) = (x-r)2 + (y+r)2 = r2​

    Çemberin Analitik İncelenmesi Kuralları Özellikleri Formülleri
    * M(a,b) çemberin merkezi ve r de çemberin yarıçapı olma üzere (x-a)²+(y-b)²= r²

    Örneğin; M(2,3) ve yarıçapı r=4 birim olan çember denklemi (x-2)²+(y-3)²= 4²
    [​IMG]

    * Merkezi sıfır olan ve yarıçarpı r olan çember denklemi x²+y²= r² dir.

    * Genel çember denklemi (x-a)²+(y-b)²= r² açılımından gelen
    x² + y² + D.x + E.y + F = 0 dir.

    * x² + y² + D.x + E.y + F = 0 genel denklemi ile verilen çemberin merkez koodinatları
    M(a,b) ise a=-D/2 ve b= -E/2 dir ve yarıçap r= (1/2). √(D²+E²-4F)

    *D²+E²-4F > 0 ise gerçel çember
    D²+E²-4F =0 ise nokta çember
    D²+E²-4F < 0 ise sanal çemberdir

    * (x1,y1) noktasının x² + y² + D.x + E.y + F = 0 çemberine göre kuvveti p=x1² + y1² + D.x1 + E.y1 + F ve bu noktadan çembere çizilen teğetin uzunluğu t=√p dir.

    * x²+y²= r² çemberi üzerindeki (x1,y1) noktasından çizilen teğetin denklemi x.x1+y.y1= r²

    * (x-a)²+(y-b)²= r² çemberi üzerindki (x1,y1) noktsından çizilen teğetin denklemi (x1-a)(x-a)+(y1-b)(y-b)= r²

    * x² + y² + D.x + E.y + F = 0 çemberi üzerindeki (x1,y1) noktasından çizilen teğetin denklemi

    x.x1 + y.y1+ (D/2).(x+x1 ) + (E/2).(y+y1) + F = 0 . (x1,y1) noktası çember dışında ise bulunan denklemler değme kirişinin denklemidir.
     



  2. BaRıŞ

    BaRıŞ New Member

  3. Misafir

    Misafir Guest

    çemberin annalitiği ünitesinin konu anlatımıni istiyorum bulamıyorum yardımcı olurmusunuz?
     

Sayfayı Paylaş