Güneş Işığını Meydana Getiren Renlerin Dalga Boyları ve Frekansları

Konusu 'Fizik' forumundadır ve RüzGaR tarafından 16 Ekim 2009 başlatılmıştır.

  1. RüzGaR Super Moderator


    Güneş Işığını Meydana Getiren Renlerin Dalga Boyları ve Frekansları
    Isaac Newton (1642-1727) beyaz güneş ışığının kırmızıdan mora kadar tam bir renkler grubundan ibâret olduğunu göstermiştir. Bu konuda Newton’dan çok önceleri, İslâm âleminin yetiştirdiği fen âlimlerinden İbn-i Heysem (965-1051)de çalışmalar yapmıştır. Hattâ ekseri ilim adamları onun modern anlamdaki geometrik optiğin kurucusu olduğunu, ışığın yansıma ve kırılma kânunlarını ilk defâ bulduğunu kabul etmektedirler. Newton, ışığın kırılmasını, daha yoğun bir ortama girerken ışığı meydana getiren parçacıkların hızının arttığı şeklinde açıklamıştır. Ayrıca, ışığın, saydam ortamların yüzeyinden kısmen yansıyıp kısmen de kırılmasını, ışık tâneciklerinin zamanla periyodik olarak değişen bir özelliği olduğunu kabul ederek açıklamaya çalıştı. Kendi adı verilen ve bir girişim olayı olan Newton halkalarını ilk defa bulduysa da, bunların dalga teorisindeki önemini fark edememiştir. Newton’un bu tanecik teorisi ışığın bir engele rastlayınca kırınıma (difraksiyon) uğraması ve benzer olayları açıklamaktan uzak kalmıştır.

    Newton ile aynı devrede yaşayan Christian Huygens (1629-1695) yaptığı çalışmalarıyla, dalga teorisini kabul edilen seviyeye getirmiştir. Huygens prensibi olarak isimlendirilen basit bir ilkenin kabulü ile yansımayı, kırılmayı ve tam yansımayı açıklamak mümkündü. Kendisi aynı zamanda çifte kırılmayı incelemiş ve bu olayı doğru bir şekilde açıklamak için ilk temeli atmıştır. Huygens’in ışığın kırılmasını açıklamasında, ışık hızının yoğun ortamda havadakine göre daha az olduğunu kabul etmek gerekiyordu. (Bkz. Huygens, Christian).

    Optik ilmi, 19. yüzyıla kadar önemli bir ilerleme kaydetmemişti. 1801’de Thomas Yougn aynı bir yüzeye düşen ışık ışınlarının birbirlerini yok edebilip, karanlık bölgeler meydana getirebileceğini göstermiştir. Bu ise dalga teorisini desteklemekteydi. Çünkü iki parçacık akışının birbirlerini yok edebileceği mümkün görülmemekteydi. Young, ışık dalgalarının titreşimlerinin birbirine ve hareket doğrultusuna dik olduğunu öne sürmüştür. Bu şekilde ışığın polarizasyonunu açıklamaya çalışmıştır.

    Augustin Fresnel’in de çalışmalarıyla dalga teorisi daha çok rağbet gördü. Kendisi ayrıca ışık hızının yoğun ortamlarda daha düşük olduğunu deneysel olarak göstermiştir.

    Bu arada elektrik ve manyetizma konusunda da ilerleme kaydedilerek ikisini bir teoride toplama çalışmaları ilerlemiştir. 1864’te bir İngiliz fizikçisi olan James Clerk Maxwell, yeni bir teori ortaya atarak, elektrik ve manyetik olaylarını beraberce açıkladı. Tamâmen teorik yolla, bir elektrik devresinin bazı durumlarda enine dalgaları uzaya yayacağını ortaya koydu. Buraya kadar Maxwell’in teorisinin ışıkla, doğrudan bir ilgisi yoktur. Ancak, ışığın ölçülen hızının, sâdece manyetik ve elektrik ölçülerden elde edilen teorik elektromanyetik dalgalarının hızı ile aynı olduğu bulundu. Yaklaşık yirmi yıl sonra Heinrich Hertz, elektromanyetik dalgalar üzerine yaptığı deneylerden, bunların ışık dalgaları ile aynı özelliğe, fakat buna karşılık daha büyük dalga boylarına sâhib olduklarını gösterdi. Bunlar ve diğer bir çok fizikçiler ışığın bir elektromanyetik radyasyon olduğunu ortaya koydu.

    Dalga olarak ışık: Işığın dalga şeklindeki yapısı gözlendikten sonra, sorular dalganın ne olduğu konusuna yöneldi. Bütün mekanik dalga hareketleri, bir ortamın düzenli periyodik titreşimini gerektirdiğinden, ışığın boşlukta da yayılması için maddî bir ortamın bulunması gerektiği sonucuna vardılar. Böylece tamâmen tasavvur olan Ether’invarlığını kabul ettiler. Kabullere göre Ether, bütün uzayı doldurmakta ve elektromanyetik dalga yayılışını mümkün kılmaktaydı.

    Diğer tür dalga hareketleri ile ışığınki kıyaslanarak, dünyânın Ether içindeki hareketinin, hareket yönünde ve ona dik yönde ışığın hızını değiştireceği sonucu ortaya kondu. Ancak 1887’de yapılan hassas deneyler böyle bir farklılığın olmadığını ve ışığın her yöndeki hızının aynı olduğunu gösterdi. Bu elde edilen sonuç Albert Einstein’in “İzâfiyet Teorisi” (Rölativite Teorisi)nin doğmasına sebeb oldu.

    Enerji parçacığı olarak ışık: Bu arada dalga teorisiyle açıklanamayan bazı olaylar ortaya çıktı. Atom fiziği ile ilişkili olan bu deneyler ise ışığın foton, (enerji yüklü parçacıklar) şeklinde yayıldığına işâret etmekteydi. Bu ise eski teoriye dönüşü gerektirmekteydi. Ancak, bu ikisi Kuantum Teorisi’yle bir araya getirilmiştir (Bkz. Kuantum). Kuantum Teorisi, dalga teorisinde değişiklik meydana getirmemekte, ışık yayılışında, dalga biçiminde olduğu halde, maddeyle olan karşılıklı ilişkilerinde enerji kuantası şeklinde davranmaktadır.

    Işığın hızı: İlk ölçümler, ışığın hızının, sesinkinden çok fazla olduğunu ortaya koymakla kaldı. İlk başarılı ölçüm 1676’da Danimarkalı astronom Roemer tarafından yapılmıştır. Jüpiterin uydularının bazan yavaş ve bazan hızlı hareket ettiklerini gözlemiş ve bunun Dünyâ ile Jüpiter arasındaki mesâfenin değişmesinden olduğunu keşfetmişti. Bu kabullerle yaptığı hesaplar sonucu ışığın yaklaşık olarak dünyânın yörüngesinin çapı olan 300.000.000 km’yi 1000 sâniyede aldığını gözlemiştir. 1849’da A.H.L. Fizeau yaptığı deneyde ise, ışık sürekli açılıp kapanan bir delikten geçirilmekte ve uzak bir aynadan yansıtıldıktan sonra, tekrar eğer delik açık ise, ışık geçebilmekte, yoksa arada kalmaktadır. Fizeau, bir dişli çarkı çevirerek dişlerinin arasındaki aralıkları açılıp kapanan delik olarak kullanmıştır. Işık bir aradan geçip aynaya gitmekte ve aynadan yansıyıp geldiğinde, çarkın devri uygun olduğunda, müteakip aralıktan geri dönmektedir. Mesâfe ve çarkın dönme hızının bilinmesiyle ışık hızı hesaplanabilir. Fizeau, yaptığı hesaplar sonucunda ışığın hızını saniyede 313.300 km olarak ortaya koymuştur.

    1862’de J. B.L. Foucault, Fizeau’nun deney düzenini geliştirmiş, dönen dişli çark yerine dönen ayna kullanarak hızı, sâniyede 298.000 km olarak bulmuştur.

    Daha sonra yapılan ölçümler ışığın, boşluktaki hızının 299.792 km/saniye olduğunu ortaya koymuştur. Işığın boşluktaki hızı, diğer bütün ortamlardaki hızlarından daha büyüktür. Bu hız, camdaki hızının 1,5-1,8 katı ve sudaki hızının 1,33 katı civârındadır.turkeyarena.com

    Işık ve renk: Renk terimi iki anlamda kullanılır. Fizik bakımından dalgaların frekansları ve şiddetleriyle belirlenir. Fizyolojik bakımdan göze gelen bu dalgalar tarafından uyandırılan etkiye bağlıdır. Görünür ışınlar, yaklaşık olarak 4000-7000 Angstrom dalga boyları arasındaki ışınlardan meydana gelir. Bu ışınlar; kırmızı, turuncu, sarı, yeşil, mavi, lâcivert ve mordan hâsıl olan bir spektrum tayfı meydana getirirler. İnsan gözü en çok sarı-yeşil (5500 A°) ışığa duyarlıdır. Ultra-viole (morötesi) ışınları 4000 Angstromdan 3000 Angstroma kadar uzanır. Enfraruj (kızılötesi) ışınları 7000-15000 Angstrom arasında yer alır.

    Güneş ışığı, yani beyaz ışık saydam bir prizmadan geçirilerek ekran üzerine düşürülürse, ekran üzerindeki ışığın beyaz olmadığı ve gökkuşağındaki yedi renge ayrıldığı görülür.

    Beyaz ışığın prizmadan geçerken yedi değişik renge ayrılmasının sebebi, beyaz ışığı meydana getiren farklı dalga boylarındaki renklerin prizmadan geçerken değişik oranlarda kırılarak birbirlerinden ayrılmasıdır. Bundan da anlaşılacağı gibi beyaz ışık, tek bir renk değil, bir çok renklerin birleşmesinden meydana gelen bir renktir.

    Işık kaynağı olmayan cisimlerin renkleri, üzerlerine düşen ışığın rengine bağlı olarak değişir. Bir cismin rengi, beyaz ışık içindeki renklerden geçirdiği veya yansıttığı renktir.

    Renkler Yaklaşık

    Dalga Boyları
    Mor[​IMG]3800-4400 A°

    Lacivert[​IMG]4400-4800 A°

    Mavi[​IMG]4800-5200 A°

    Yeşil[​IMG]5200-5600 A°

    Sarı[​IMG]5600-5900 A°

    Turuncu[​IMG]5900-6300 A°

    Kırmızı[​IMG]6300-7800 A°
     



  2. Funda3418 Well-Known Member

    süper bi site çok sağolun
     

Sayfayı Paylaş