Doğrunun Denklemi Konu Anlatımı

Konusu 'Geometri' forumundadır ve RüzGaR tarafından 25 Şubat 2011 başlatılmıştır.

  1. RüzGaR Super Moderator


    Doğrunun Denklemi Konu Anlatımı
    Bir doğru üzerindeki noktaların koordinatlarını veren eşitliğe doğrunun denklemi denir.

    y = mx + ny = mx + n eşitliğinde m: eğim, n: sabit sayıdır. ax + by + c = 0 şeklinde verilen denklemde y yalnız bırakılırsa
    [​IMG]
    elde edilir x in katsayısı [​IMG] eğimi verir.
    Öyle ise,
    ax + by + c = 0 doğrusunun eğimi

    [​IMG]
    Eğimi eşit olan doğrulara paralel doğrular denir. Doğruların eğimleri arasındaki bağıntıdan daha sonra bahsedeceğiz.

    2. İki Noktası Bilinen Doğrunun Eğim ve Denklemi

    a. İki noktası bilinen doğrunun eğimi
    [​IMG]

    Analitik düzlemde A(x1, y1), B(x2, y2) noktaları bilinen d doğrusu üzerinde A, B noktalarının koordinatları kullanılarak oluşturulan ABC üçgeninin A açısı ile d doğrusunun eğim açısı yöndeş açılar olduklarından eşittirler.
    Buradan

    [​IMG]

    • [​IMG]olduğundan

    [​IMG]şeklinde de yazılabilir

    b. İki noktası bilinen doğrunun denklemi
    [​IMG]



    A(x1, y1), B(x2, y2) noktalarından geçen d doğrusu üzerinde doğruyu oluşturan noktaları temsil eden P(x, y) noktası alalım. Bu üç noktadan herhangi ikisini kullanarak yazacağımız eğimler eşittir. Buna göre,
    [​IMG]
    Bu eşitlik bize iki noktası bilinen doğru denklemini verir.

    [​IMG]


    şeklinde de yazılabilir. Sonuç aynıdır.
    • Orijinden yani O(0,0) noktasından geçen doğrularda x = 0 için y = 0 olacağından
    y = mx + n denklemindeki n terimi sıfır olur.

    O halde orijinden geçen doğrunun eğimi m ise denklemi
    y= mxDoğru denklemi ax + by + c = 0 şeklinde ise ve orijinden geçiyorsa c = 0 dır.
    Doğru denklemi ax + by = 0 olur.


    3. Bir Noktası ve Eğimi Bilinen Doğrunun Denklemi
    A(x1, y1) noktasından geçen ve eğimi m olan doğru denklemi[​IMG]A(x1, y1) noktası ve P(x, y) noktası kullanılarak yazılan eğim değeri verilen eğime eşitlenir.turkeyarena.com

    4. Eksenlere Paralel Doğruların Denklemi
    a. Eksen doğruları
    Analitik düzlemde x (apsis) ekseninde bütün noktaların y si (ordinatı) sıfır olduğundan x ekseni aynı zamanda y = 0 doğrusudur.
    y (ordinat) ekseni de x = 0 doğrusudur.

    [​IMG]

    b. x eksenine paralel doğrular
    y = k doğrusu; y eksenini k noktasında keser, x eksenine paralel ve y eksenine diktir.

    [​IMG]

    c. y eksenine paralel doğrular
    x = k doğrusu;
    x eksenini k noktasında keser, y eksenine paralel ve x eksenine diktir.

    [​IMG]

    5. Eksenleri Kestiği Noktaları Bilinen Doğruların Denklemi
    x eksenini a noktasında y eksenini de b noktasında kesen doğrunun denklemi

    [​IMG]

    [​IMG]

    Doğru (a, 0) ve (0, b) noktalarından geçtiğine göre, doğrunun denklemi iki noktadan geçen doğru denklemi özelliği kullanılarak da yazılabilir.turkeyarena.com
    • Dik koordinat sisteminde apsisleri ordinatlarına eşit olan noktaların oluşturduğu doğruya y=x doğrusu denir.
    [​IMG]
    • Dik koordinat sisteminde apsisleri ile ordinatları birbirinin ters işaretlisi olan noktaların oluşturduğu doğruya y= -x doğrusu denir.
    [​IMG]

    [​IMG]
    • y = x ve y = –x doğruları aynı zamanda koordinat eksenlerinin açıortaylarıdır. Koordinat eksenleri ile yaptıkları açılar 45° dir.
    6. Doğruların Grafikleri
    Doğruların grafiklerini çizmek için x ve y eksenlerini kestikleri noktalar bulunur.

    x eksenini kestiği nokta için y = 0 ve y eksenini kestiği nokta için x = 0 değerleri alınır.
     



  2. memo398 New Member

    Sayende dönem dersimi yaptım çok teşekürler :)
     
  3. Misafir Guest

    arkadaşım bazı yerler görünmüyor yeniden paylaşabilir misin ve ya oralarda ne yazdığını söyleyebilir misin. Lütfen yıllık dersim var onun için
     
  4. Misafir Guest

    Kardeş Bazı Yerler Gözükmüyor Tekrar Yazarmısın Zahmet Olmassa.
     
  5. Misafir Guest

    yaa bu düzlemde doğru denklemi ile doğru denklemleri aynı konumu oluyor ?
     
  6. oguzturk Administrator Staff Member

    evet aynı konu oluyor düzlemde denince koordinatlar verilir
     

Sayfayı Paylaş